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This paper presents a general formulation of the continuous sensitivity equation

method for computing first order sensitivities for transient non-linear heat conduction

problems. The development of general differential equations for the sensitivities is pre-

sented for the fully non-linear heat equation. Boundary conditions are developed for

both shape and value parameters. For shape parameters, this requires the extraction

of first and second derivatives of the temperature along solid surfaces, a very challeng-

ing problem. The temperature and sensitivity equations are solved by a finite element

method. Grid and time-step refinement studies are used to control accuracy. The pro-

posed methodology is verified on a problem with a closed form solution using the method

of manufactured solutions. The verified code is then applied to identify physical prop-

erties from a single point measurement. We demonstrate the use of sensitivities for fast

computation of nearby solutions. We also use sensitivity information for cascading input

data uncertainty through the finite element solver to produce uncertainty estimate of the

thermal response of the system.

INTRODUCTION

Sensitivity variables are used in a wide range of
engineering problems.1 Applications include optimal
design, parameter estimation, uncertainty analysis,2

computing rate derivatives,3 and sensitivity studies of
engineering systems.1, 2

Basically, a sensitivity is the derivative of a de-
pendent variable with respect to a design parameter.
As an example, ∂T

∂k
is the sensitivity of the tempera-

ture with respect to k, the thermal conductivity. It
expresses how the temperature field responds to per-
turbations of k around its nominal value. Sensitivities
can also be used for fast computation of solutions
at nearby values of the parameters without resorting
to a full blown reanalysis or to cascade input data

∗Graduate Student
†Graduate Student
‡Research Fellow
§Canada Research Chair, Associate Fellow AIAA
¶Associate Professor, Senior Member AIAA
Copyright c© 2003 by the authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

uncertainty through a finite element code to yield un-
certainty estimates of the thermal response. Speed and
cost-effectiveness are achieved by using temperature
sensitivities in a Taylor expansion in the parameter
space.

Dowding et al.4 and Blackwell et al.5 have pre-
sented sensitivity equations for conduction problems.
Their work is restricted to value sensitivities and does
not cover shape sensitivities. Their development is
performed on the integral form used in the finite vol-
ume method. While efficient and elegant for value sen-
sitivities, their approach leads to complications when
trying to apply this for shape sensitivities, due to the
delicate evaluation of mesh sensitivities. Although
there are many approaches for computing sensitiv-
ity variables,6 we emphasize the continuous sensitivity
equation (CSE) approach, where the partial deriva-
tive of temperature with respect to the parameter is
approximated.

This paper presents a continuous sensitivity equa-
tion method for transient non-linear heat conduction
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problems. The development is performed for value
and shape sensitivities and the resulting equations are
solved by a finite element method specifically designed
to handle their numerical approximation.

This paper is organized as follows. First, the tran-
sient non-linear heat conduction model and boundary
conditions are presented. The corresponding first or-
der general sensitivity equations are then developed for
both shape and value parameters. Some details about
the numerical algorithm and the adaptative method-
ology follow. Next, the methodology is verified on a
problem with a closed form solution and finally ap-
plied to identify physical properties from a single point
measurement. Sensitivity information is also used to
obtain fast computation of nearby solutions and to
perform uncertainty analysis of the thermal response.
The paper ends with conclusions.

NON-LINEAR HEAT CONDUCTION

EQUATION
Temperature Equations

We consider the fully non-linear heat equation:

ρcp

∂T

∂t
= ∇ ·

(

k(T )∇ · T
)

+ q (1)

subject to the following initial and boundary condi-
tions:

T (x, t) = Tb(x, t) on ΓD (2)

−k∇T · n = qa(x, t) on ΓN (3)

T (x, t = 0) = T0(x) (4)

Sensitivity Equations

The continuous sensitivity equations (CSE) are de-
rived formally by implicit differentiation of the heat
conduction equations (1)-(4), with respect to the pa-
rameter p. Thus, we treat the variable T not only
as a function of space and time, but also as a func-
tion of the parameter a. This dependence is denoted
as T(x;a). Defining the partial derivatives sa

T = ∂T
∂a

and the derivatives of the other variables by a (’) (for
example ρ′ = ∂ρ

∂a
), we obtain:

ρ′cp
∂T
∂t

+ ρc′p
∂T
∂t

+ ρcp
∂Sa

T

∂t
=

∇ ·
(

k′(T )∇ · T
)

+ ∇ ·
(

k(T )∇ · Sa
T

)

+ q′ (5)

and the initial condition:

Sa
T (x, t = 0) =

∂T0

∂a
(x) (6)

The key point here is that we adopt a general ap-
proach: we consider any parameter a. Consequently,
all of the quantities involved (temperature, material
properties, coefficients, ...) may simultaneously de-
pend on a. Therefore, all possible terms are actually
included in the formulation. If any material properties

are variable, then their differentiation must account for
the total functional dependence.

Boundary conditions for sensitivities are also de-
rived by implicit differentiation of equations (2)-(3).
Generally speaking, the boundary can be parameter-
dependent and the calculation of the sensitivities re-
quires the extraction of the first and second order
derivatives of the temperature along the solid sur-
face. For value parameters, boundary conditions can
be written:

Sa
T (x, t) = ∂Tb

∂a
(x, t) on ΓD (7)

−k′∇T · n− k∇Sa
T · n = ∂q

∂a
(x, t) on ΓN (8)

For shape parameters, the boundary conditions be-
come:

Sa
T (x, t) = ∂Tb

∂a
(x, t) −∇T · ∇ax on ΓD (9)

−k′∇T · n− k∇ST · n = ∂q
∂a

(x, t)

+k∇
(

∇T · ∇ax
)

on ΓN (10)

where

∇ax =

(

∂x

∂a
,
∂y

∂a

)

(11)

IMPLEMENTATION

The CSE has the same linearization and bound-
ary condition types as the heat conduction equations.
Therefore, the software will use a similar structure in
approximating the CSE as described in.7 The tem-
perature and continuity equations are solved with a
Galerkin finite element method.8 The temperature
is discretized using the six-nodes triangular element
which uses a quadratic polynomial approximation.
The adaptative remeshing procedure is modeled after
that of Peraire and al.9 and is described in more detail
by Ilinca and Pelletier.10 The procedure clusters grid
points in region of rapid variation of the dependent
variables. Error estimates are obtained for tempera-
ture and its sensitivities by a local least squares recon-
struction of the solution derivatives.11 For transient
cases, a fixed mesh with no adaptation is used.

NUMERICAL RESULTS
Verification Problem

Our method is tested on a steady nonlinear heat
conduction problem and a transient heat conduction
problem.

Firstly, we test our method on the nonlinear heat
conduction problem in a one-dimensional slab of thick-
ness l assuming that the thermal conductivity is a
piecewise linear function of temperature. This is the
same verification problem used by Dowding et al.12

d

dx

(

k(T )
dT

dx

)

= 0 (12)

T (0) = TL (13)

T (l) = TR (14)
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where

k(T ) =

{

k1
T2−T
T2−T1

+ k2
T−T1

T2−T1

, T1 ≤ T ≤ T2

k2
T3−T
T3−T2

+ k3
T−T2

T3−T2

, T2 ≤ T ≤ T3

}

An analytical solution of this problem is presented
in.12 Expressions for the sensitivity to k1, k2 and k3

are obtained by differentiating the temperature solu-
tion with respect to these parameters.

We choose to make our computations with non-
dimensional variables. The domain has unit thickness,
l = 1. The boundary temperatures are TL = 0 and
TR = 1. Thermal conductivity is represented by two
linear segments interpolating between the values k1,
k2, and k3 given in Table 1.

Temperature, T 0 0.5 1
Conductivity, k 1 2 6

Table 1 Conductivity definition

In Figure 1, we present the true errors in the deriva-
tives of T as the meshes are adapted. We can easily
see the second order convergence of the temperature
and its sensitivities. Notice that in order to obtain
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Fig. 1 Trajectories of temperature and sensitivity

errors on a mesh matching conductivity interface

a convergence rate of two for the sensitivities it was
necessary to divide the computational domain in two
zones, the interface between the zones coinciding with
the line of discontinuity of the derivative of the piece-
wise linear conductivity k. For a general mesh, as
mentioned in,12 the sensitivities achieve only first or-
der accuracy (see Figure 2).

Next, we want to verify our method on the non-
linear transient heat conduction equation using man-
ufactured13 and exact solutions14 and we will perform
a systematic grid and time-step refinement studies to
verify the convergence rate of the finite element solu-
tions of heat conduction equation and its sensitivity
equations.
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Fig. 2 Grid convergence on a mesh not matching

conductivity interface.

We have constructed a one-dimension non-linear
transient analytical solution in a two-dimension do-
main.

T (x, t) = e−A(x−x0)
2

(15)

x0 = Rsin(2πt) + xc

Ω = [0, 1]× [0, 0.2], t ∈ [0, 0.25]

The following non-dimensional physical properties are
constants: ρ = 1, cp = 1. The thermal conductivity is
a linear function of temperature for which the values of
k1 and k2 with their corresponding temperatures are
given in Table 2.

k(T ) = k1

(

T2 − T

T2 − T1

)

+ k2

(

T − T1

T2 − T1

)

(16)

where

Temperature, T 0 1
Conductivity, k 0.5 1

Table 2 Conductivity definition

The values of parameters which describe the tem-
perature definition are:

A = 10, R = 0.3, xc = 0.5

where R and A are the sensitivity parameters.
To satisfy the non-linear transient heat conduction,

we add a source term in the solved equation calculated
as follow:

q(x, t) = ρcp
δT

δt
−∇(k∇T ) (17)

Any combinations of Dirichlet and Neumann bound-
ary conditions type can be applied on the domain.
We choose to apply Dirichlet condition on boundaries
which takes the value of the analytical solution eval-
uted at the boundary. The analytical solution evalu-
ated at initial time t = 0 is applied as initial condition.
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A time-step and grid convergence study for the tem-
perature and its sensitivity is shown in Figure 3. To
demonstrate this double convegence (time-step and
grid), we have performed simulations described in Ta-
ble 3. The temperature, as well as its sensitivity,
demonstrates a fourth-order accuracy with the refine-
ment of the time steps and grid.
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Fig. 3 Time and grid convergence of temperature

and its sensitivities

Mesh Crank-Nicholson
Nel h N∆t ∆t

1 50 0.131277 5 0.05
2 200 0.064958 10 0.025
3 800 0.032904 20 0.0125
4 3200 0.015749 40 0.00625
5 12810 0.007833 80 0.003125

Table 3 Grid and time steps definition

We use a second-order integration scheme (Cank-
Nicholson) for the transient computation, thus we have
a second-order solver in space and time. For each sim-
ulation we divide by two time-step and elements size
which means to divide exact error by four.

These results confirm the correctness of the imple-
mentation of the first order sensitivities in the solver
and verify the calculation of the continuous first order
sensitivity equations by the adaptative finite element
solver.

Transient non-linear problem

We consider an experimental design for estimat-
ing linearly varying temperature-dependent properties
from a single experiment. The configuration was pro-
posed by Dowding et al.12 for polyurethane foam.
Two identical specimen of foam of thickness Lf , sep-
arated by a heater of thickness 2Lh, are sandwiched
between two aluminum blocks. The cross-section of
all components is the same. A two dimensional model
of the experiment is showed on Figure 4. Because
of the symmetry of the problem only one half of the
configuration is presented. Also, as the role of the alu-
minum block is to maintain a constant temperature on

the wall opposite to the heater, it was replaced in our
model by an isothermal boundary condition. All other
walls are considered adiabatic. By knowing the input
heat flux and measuring the temperature elsewhere in
the domain, the thermal properties of the foam can
be estimated. Dowding et al.12 compare two different
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Fig. 4 Two dimensional model of an experiment to

estimate thermal properties of polyurethane foam.

configurations where the foam react as a finite or a
semi-infinite body. They show using the D-optimality
criterium that the finite body is better for estimating
the thermal properties of the foam. In our calculations
we will consider only the finite body configuration.

The values of the different parameters of the prob-
lem are given in Table 4. The thermal properties of
the heater, conductivity and volumetric heat capac-
ity (C = ρCp), are constant. Those of the foam are
linearly dependent on the temperature.

kf (T ) = κ
(

k1
T2 − T

T2 − T1
+ k2

T − T1

T2 − T1

)

(18)

Cf (T ) = γ
(

C1
T2 − T

T2 − T1
+ C2

T − T1

T2 − T1

)

(19)

The parameters κ and γ are introduced for conve-
nience in the sensitivity analysis. They are set to
one. The sensitivity to these parameters will allow
us later to produce uncertainty estimate of the ther-
mal response of the system. Simulated temperature
response for a foam thickness of 2.54 cm is shown in fig-
ure 5. Two measurement locations are simulated: one
at the heated surface (x = 0) and the other in the mid-
dle of the foam layer (x = 0.5). The imposed heat flux
ends at t = 1.5×104s corresponding the dimensionless
t̃ = 2.68 on the different figures. The scaled sensitiv-

ity coefficients (
a0Sa

T

Tmax
) for the four parameters k1, k2,

C1, C2 and the two mesurement locations are shown in
Figures 6 and 7. Theses coefficients are normalized by
the maximum temperature rise. The results presented
are as accurate as those obtained by Dowding12 with
a finite volume method. In our simulation, we include
the sensitivities with respect to κ and γ, which provide
an additional information on the linearly dependent
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dimensional non-dimensional

Lh 0.63 mm 0.0248
kh 0.1 W/mK 2.0
Ch 2.3E + 06 J/m3K 5.31178
Lf 2.54 cm 1.0
k1 0.05 W/mK 1.0
k2 0.102 W/mK 2.04
C1 0.433E + 06 J/m3K 1.0
C2 1.19E + 06 J/m3K 2.74827
T1 25 ◦C 0.125
T2 200 ◦C 1.0
qa 500 W/m2 1.27

Table 4 Parameter definition
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Fig. 5 Temperature response for a foam thick-

ness of 2.54 cm with linearly varying temperature

dependent properties.

properties. Furthermore, we also solve the sensitiv-
ity equation for the shape parameter Lf (thickness of
the foam). The results are plotted in Figure 8 and
9. Notice how the shapes of the sensitivity coeffi-
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cients change when the heat flux ends, especially for
C1, C2, and γ, which actually change signs. In addi-
tion, the sensitivity coefficient for Lf is larger than the
other coefficients. In the design of experiments, large
and uncorrelated scaled sensitivities lead to better es-
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timates of the thermal response. We follow here the
steps of Dowding et al. by providing a sensitivity anal-
ysis in order to determine the optimum experimental
configuration to estimate the temperature-dependent
variables. In most cases, a known input heat flux per-
mits conductivity and volumetric heat capacity to be
simultaneously estimated from a single experiment by
applying a sequential method (Beck and Osman15).

The use of sensitivity coefficients for fast compu-
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tation of nearby solutions is demonstrated in Figure
10 for the shape parameter Lf . The exact and esti-
mated temperature are plotted for a variation of 10%
of the foam thickness and the results show an accurate
linear extrapolation. In a physical experiment, we rec-
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Fig. 10 Exact and Extrapolated thermal response

for
∆Lf

Lf
= 10%

ognize that there are both measurement uncertainties
in the experimental data as well as uncertainties in the
parameters. In our study, sensitivity analysis is com-
bined with linear Taylor-like estimates to provide un-
certainty bands for numerical simulations. These can
then be compared to experimental measurements. If
we group our parameters in the vector a = (a1, ..., an),
then if a is perturbed by ∆a, the temperature varia-
tion may be approximated as follows:

|T (x;a + ∆a) − T (x;a)| ≤
n

∑

i=1

∣

∣

∣

∣

∂T

∂ai

(x;a)∆ai

∣

∣

∣

∣

(20)

We present in Figure 11 the contributions to the un-
certainty calculations from the parameters κ and γ.
Here we use the following uncertainty bounds: κ± 0.1
and γ ± 0.1. Note the tighter bound at x = 0.5.
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CONCLUSION

A general formulation of the continuous sensitivity
equation for transient nonlinear heat conduction prob-
lems was computed through an finite element code
and tested on a problem with a closed form solution.
The verified code was then applied to identify lin-
early varying temperature-dependent properties in a
finite polyurethane foam. Parametric sensitivity anal-
ysis allowed us to find the influence of both value and
shape parameters on the state of the system. We then
demonstrated the use of the sensitivity coefficients for
fast computation of nearby solutions. Sensitivity in-
formation was also computed to produce uncertainty
estimates of the thermal response.
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